LESSON PLAN

Session: 2025-26

Name of teacher- Dr. Urmila

Class Course: B.Sc (Hons.)1st SEMESTER

Code: - 24CHES401DS01

Subject- DSC PAPER I General Chemistry-I

Month	Syllabus
July	Unit – I
	Atomic Structure and Periodicity of Elements:
	Bohr's atomic model and its application,
	quantum numbers, their application and rules of electronic
	configuration, effective nuclear
	charge, shielding or screening effect, slater rules, variation of effective nuclear charge in
	periodic table. Periodic trends in atomic radii, ionic radii and its
	calculation, covalent radii,
	electronegativity, electron gain enthalpy, ionization enthalpy and factors
	affecting ionization
	energy. Pauling, Mullikan and Allred Rachow scales.
August	Unit – II
/ tagast	Ionic Solids: Ionic bond and its characteristics and factors affecting, types
	of Bravais lattice, voids, packing in solids, determination of radius ratio of
	all voids, radius ratio rule and its limitations. Packing of ions in crystals,
	calculation of density and crystal structures of ionic solids (NaCl, CsCl,
	ZnS, CaF2, Na2O), defect structures in crystal. Born-Landé equation with
	derivation, expression for lattice energy, Madelung constant, Born-Haber
	cycle and its application with examples, solvation energy.
	Semiconductors, types of semiconductors, valence bond and band
	theories (alloys excluded).
September	Unit – III
	Gaseous State-I: Elementary treatment of gas laws, kinetic gas equation
	and its derivation, deviations from ideal gas behaviour, compressibility
	factor (Z) and its variation with pressure and temperature for different
	gases, Van der Waals equation of state, its derivation and application in
	explaining real gas behavior, mention other equations of state
	(Bertheolot, Dielectric or Dieterici), Van der Waals equation expressed in
	virial form and calculation of Boyle temperature, critical temperature,
	critical pressure, critical volume and their determination. Isotherms of
	real gases and their comparison with Van der Waals isotherms,
	continuity of states, relationship between critical constants and Van der
	Waals constants, law of corresponding states, reduced equation of state.

October	Unit – IV
	Basics of Organic Chemistry and Stereochemistry: Electronic
	displacements and their applications, reactive intermediates, types of
	organic reactions and energy considerations. Methods of determination
	of reaction mechanism (product analysis, intermediates, isotope effects,
	kinetic and stereochemical studies). Stereoisomerism: Optical activity
	and optical isomerism, asymmetry, chirality, enantiomers,
	diastereomers. Specific rotation, configuration and projection formulae:
	Newmann, Sawhorse, Fischer and their interconversion. Chirality in
	molecules with one and two stereocentres: meso configuration, racemic
	mixture and their resolution. Relative and absolute configuration: D/L
	and R/S designations. Geometrical isomerism: cis-trans, syn-
	anti and E/Z notations using CIP rules.
November	Assignments
	Viva
	Test
	Revision
	MDU examination (19/11/2025 onwards)
December	MDU examination
	Winter break (21/12/25 to 31/12/25)

LESSON PLAN

Session: 2025-26

Name of teacher- Dr. Urmila

Class Course: B.Sc (Physical Science)1st SEMESTER

Code: - 24CHE401MI01

Subject- (Minor Course) Basic Concepts of Chemistry

Month	Syllabus
July	Unit – I
	Atomic Structure
	Atomic models, Rutherford's model and its limitations, Bohr's model and
	its applications, dual nature of matter and light, de Broglie's relationship,
	Heisenberg uncertainty principle, concept of orbitals, quantum numbers,
	shapes of s, p and d orbitals, rules for filling electrons in orbitals - Aufbau
	principle, Pauli's exclusion principle and Hund's rule, electronic
	configuration of atoms, stability of half-filled and completely filled
	orbitals.
August	Unit – II
	Periodic Table and Atomic Properties
	Brief history of the development of periodic table, modern periodic law
	and the present form of periodic table, periodic trends in properties of
	elements -atomic radii, ionic radii, inert gas radii, ionization enthalpy,
	electron gain enthalpy, electronegativity, valency. Nomenclature of
	elements with atomic number greater than 100.
September	Unit – III
	Mole Concept
	Atomic mass, mole concept and molar mass, Avogadro's number and its
	significance, percentage composition, empirical and molecular formula,
	chemical reactions, ways of expressing concentration of solutions
	(molarity, normality, molality, mole percentage, strength), stoichiometric
October	calculations involving reactants and products. Unit – IV
October	Fundamentals of Organic Chemistry
	Electronic displacements: Inductive effect, electromeric effect,
	resonance, hyperconjugation. Cleavage of bonds: homolysis and
	heterolysis. Reaction intermediates: carbocations, carbanions, free
	radicals, and carbenes. Electrophiles and nucleophiles. Aromaticity:
	benzenoids and Huckel's rule.
November	Assignments
	Viva
	Test
	Revision
	MDU examination (19/11/2025 onwards)
December	MDU examination

Winter break (21/12/25 to 31/12/25)

LESSON PLAN

Session: 2025-26

Name of teacher- Dr. Urmila

Class Course: B.Sc (Physical Science) 3rd SEMESTER

Code: - 25CHE402MI01

Subject- (Minor Course) Chemistry of Metals & Non-Metals, Hydrocarbons and Solutions

Month	Syllabus
July	Unit – I
	Metal and Non-Metals
	Occurrence of elements in nature, physical and chemical properties of
	metals and non-metals, minerals and ores, metallurgical processes
	(benefaction, roasting, calcination and reduction of metal oxides
	processes), refining of metals, metallurgy of Fe, Zn, Al and Cu.
August	Unit – II
	Solution
	Types of solutions, expression of concentration of solutions of solids in
	liquids, solubility of gases in liquids, solid solutions, Raoult's law,
	colligative properties - relative lowering of vapour pressure, elevation of
	boiling point, depression in freezing point, osmotic pressure,
	determination of molecular masses using colligative properties,
	abnormal molecular mass, Van't Hoff factor.
September	Unit – III
	Hydrocarbons
	Alkanes: General methods of preparation and Reactions: free radical
	substitution.
	Alkenes: General methods of preparation and Reactions: cis-addition
	(alk. KMnO4) and trans-addition (bromine), addition of HX
	(Markownikoff's and anti-Markownikoff's addition), hydration,
	ozonolysis, oxymecuration-demercuration, hydroboration oxidation.
	Alkynes: General methods of preparation and Reactions: formation of
	metal acetylides and acidity of alkynes, addition of bromine and alkaline
	KMnO4, ozonolysis and oxidation with hot alk. KMnO4, hydration to form carbonyl compounds.
October	Unit – IV
Octobel	Aromatic Hydrocarbons
	Structure of benzene (Kekule, hybrid and resonance), preparation of
	benzene. Reactions: electrophilic substitution reactions in benzene citing
	examples of nitration, halogenation, sulphonation and Friedel-Craft's
	alkylation and acylation with special emphasis on carbocationic
	rearrangement, side chain oxidation of alkyl benzene.

November	Assignments
	Viva
	Test
	Revision
	MDU examination (19/11/2025 onwards)
December	MDU examination
	Winter break (21/12/25 to 31/12/25)