Thermodynamic and Kinetic Aspects of Metal Complexes (Lecture-4)

B.Sc. 5th Semester (Pass Course)

INORGANIC CHEMISTRY

(As per MDU, Rohtak Syllabus)

Presented by:

Dr. Anju Siwach

Assistant Professor Chemistry Govt. College, Badli, Jhajjar.

CONTENT

- TRANS EFFECT
- APPLICATIONS OF TRANS EFFECT
- THEORIES OF TRANS EFFECT

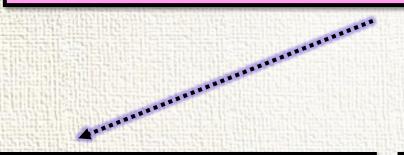
Trans Effect

The trans-effect is defined:

"The ability of a ligand to promote rapid substitution of a ligand trans to itself."

- the tendency of a strong trons directing (1) to send the incoming(1) its trans position is called trans effect

$$\frac{1}{\text{coplace | Strong}} \xrightarrow{\text{thing}} \frac{1}{-\alpha} \xrightarrow{\text{thing}} \frac{1}{\alpha} = \frac{1}{$$


trans effect of -No2 > - U

Hence the incoming () occupies trans position to the strong trans direc

(1) in substitution xx?. This effect also influences the xx? rate...

The general order of ligand trans-effect is

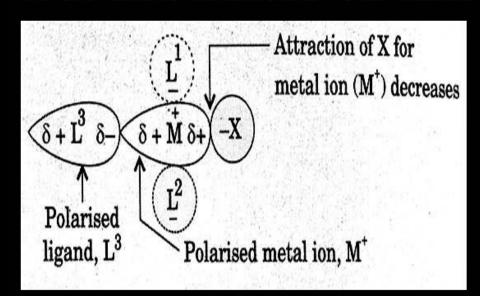
H₂O, OH-<NH₃,py<Cl-<Br-<l->SCN, NO₂-<C₆H₅<CH₃-,SR₂<H-,PR₃<H₂C=CH₂,CN-,CO

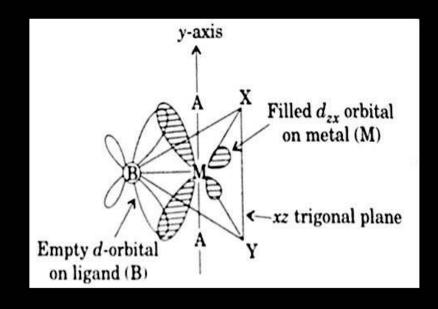
The (1) of higher trans directing nature have empty IT & 11* orb c can accept the lone pair of e from the central metal atom/i through back boncling.

eq (i)
$$Mn0y \rightarrow Mn_{35} = (Ax) 3d^5 45^2$$
 $Mn0y is purple color of the second s$

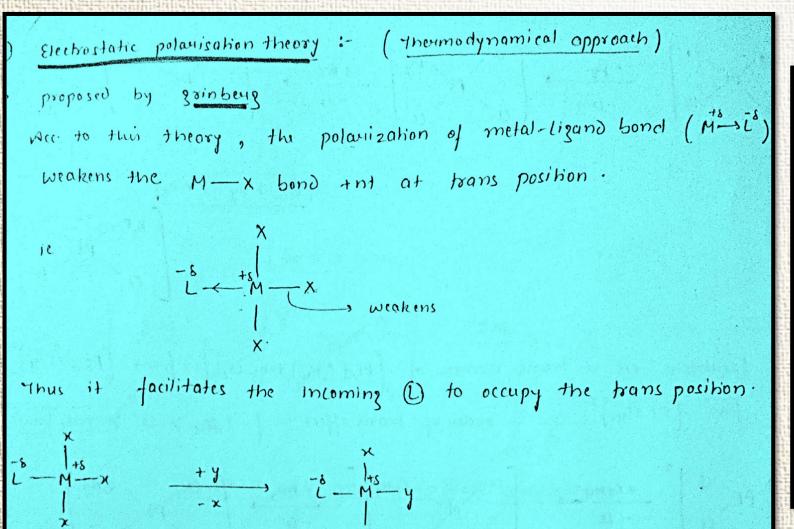
By ordering the sequence of addition of substituents, can use the trans effect to produce a desired isomer.

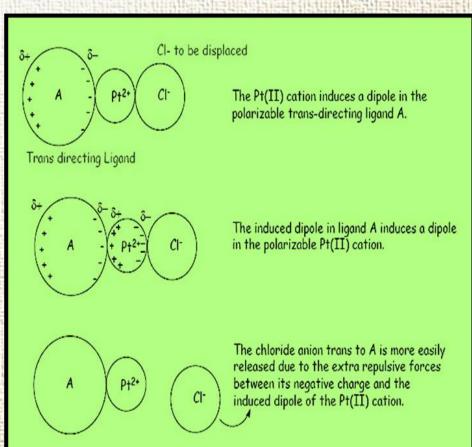
$$MnO_{ij} \rightarrow Mn_{is} = (A_{i}) 3d^{5} u_{s}^{2}$$


$$MnO_{ij} \rightarrow Mn_{ij} = (A_{i}) 3d^{5} u_{s}^{2}$$


$$MnO_{ij} \rightarrow MnO_{ij} \rightarrow M$$

THEORIES OF TRANS EFFECT


POLARIZATION THEORY

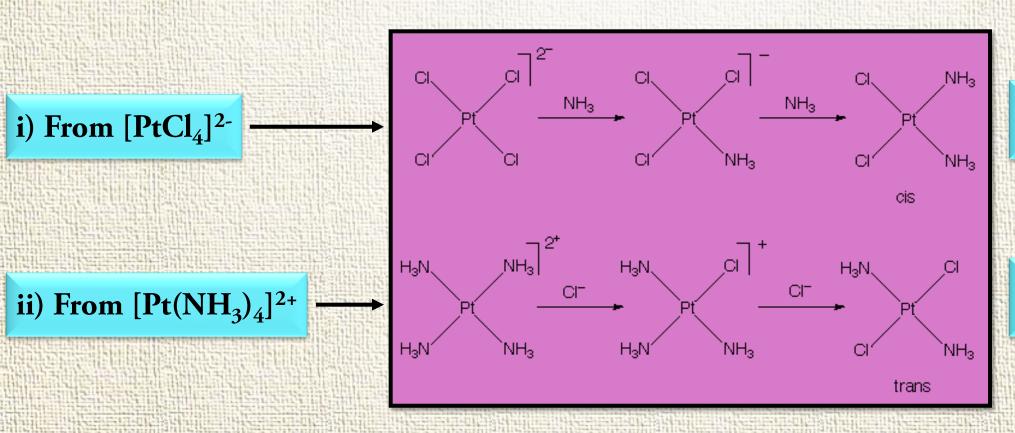

PI BONDING THEORY

Polarization Theory

Pi-bonding Theory

Π - bonding theory:proposed by chatt-orgel. The Tracid (or Tracceptor () can form To bond (back bonding) M = C = 0 Il bond also along with a bond with untral metal ion in the complex .. Henu such Ligards can act as strong transdirecting effect () [du to 11 boncling, e-s in the direction of () Tses-a diminishes it in the direction of (x) trans to () $\begin{array}{c|c}
\downarrow & \downarrow & \downarrow & \downarrow \\
\uparrow & \downarrow & \downarrow & \downarrow & \downarrow \\
\uparrow & \downarrow & \downarrow & \downarrow & \downarrow \\
\uparrow & \downarrow & \downarrow & \downarrow & \downarrow \\
\uparrow & \downarrow & \downarrow & \downarrow & \downarrow \\
\uparrow & \downarrow & \downarrow & \downarrow & \downarrow \\
\uparrow & \downarrow & \downarrow & \downarrow & \downarrow \\
\uparrow & \downarrow & \downarrow & \downarrow & \downarrow \\
\uparrow & \downarrow & \downarrow & \downarrow & \downarrow \\
\uparrow & \downarrow & \downarrow & \downarrow & \downarrow \\
\uparrow & \downarrow & \downarrow & \downarrow & \downarrow \\
\uparrow & \downarrow & \downarrow & \downarrow & \downarrow \\
\uparrow & \downarrow & \downarrow & \downarrow & \downarrow \\
\uparrow & \downarrow & \downarrow & \downarrow & \downarrow \\
\uparrow & \downarrow & \downarrow & \downarrow & \downarrow \\
\uparrow & \downarrow & \downarrow & \downarrow & \downarrow \\
\uparrow & \downarrow & \downarrow & \downarrow & \downarrow \\
\uparrow & \downarrow & \downarrow & \downarrow & \downarrow \\
\uparrow & \downarrow & \downarrow & \downarrow & \downarrow \\
\uparrow & \downarrow & \downarrow & \downarrow & \downarrow \\
\uparrow & \downarrow & \downarrow & \downarrow & \downarrow \\
\uparrow & \downarrow & \downarrow & \downarrow & \downarrow \\
\uparrow & \downarrow & \downarrow & \downarrow & \downarrow \\
\uparrow & \downarrow & \downarrow & \downarrow & \downarrow \\
\uparrow & \downarrow & \downarrow & \downarrow & \downarrow \\
\uparrow & \downarrow & \downarrow & \downarrow & \downarrow \\
\uparrow & \downarrow & \downarrow & \downarrow & \downarrow \\
\uparrow & \downarrow & \downarrow & \downarrow & \downarrow \\
\uparrow & \downarrow & \downarrow & \downarrow & \downarrow \\
\uparrow & \downarrow & \downarrow & \downarrow & \downarrow \\
\uparrow & \downarrow & \downarrow & \downarrow & \downarrow \\
\uparrow & \downarrow & \downarrow & \downarrow & \downarrow \\
\uparrow & \downarrow & \downarrow & \downarrow & \downarrow \\
\uparrow & \downarrow & \downarrow & \downarrow & \downarrow \\
\uparrow & \downarrow & \downarrow & \downarrow & \downarrow \\
\uparrow & \downarrow & \downarrow & \downarrow \\
\downarrow & \downarrow & \downarrow &$ II acid (1)

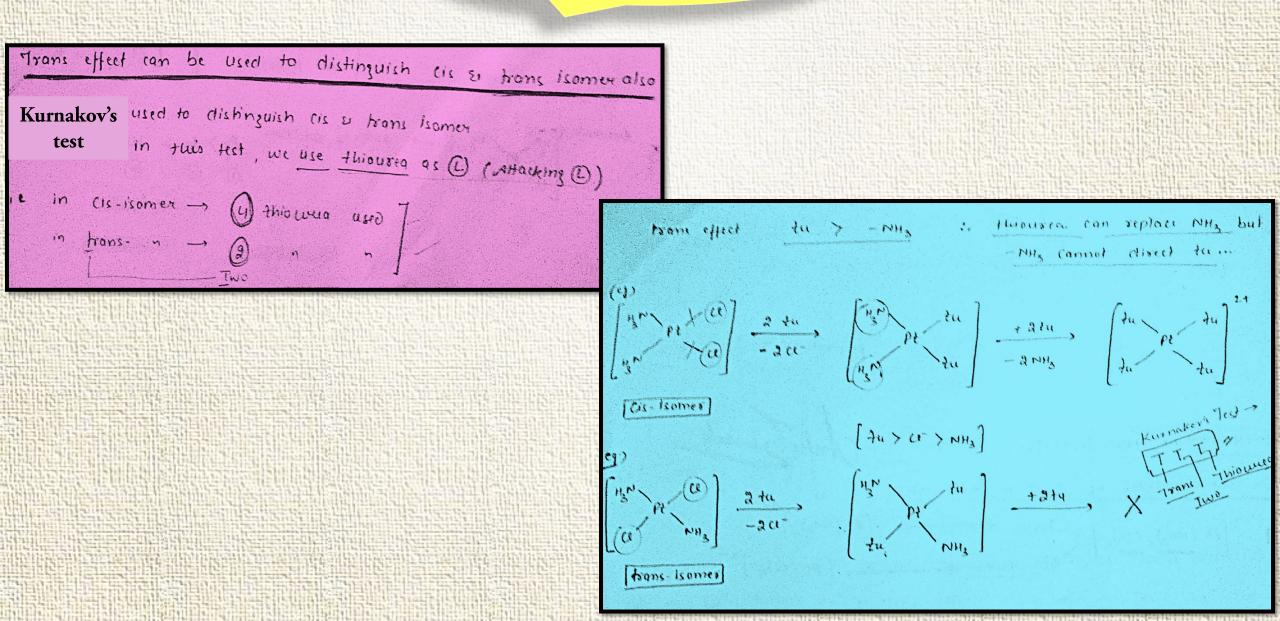
Thus M-x bond at trans position weakens with increase in bond length So, it facilitates the entry of new (1) to form penta co-ordinates transition state 5-co-ordinated T.S [PtLX2Y] Back bonding - : Y enturing of (distorted 76p) week X leaving group vocant p. stotides fined dys osbitals


Applications

Synthesis of Pt(II) complexes

Kurnakov's test

Synthesis of other complexes


Synthesis of Pt(II) complexes

We get Cis-isomer

We get Transisomer

Kurnakov's test

Synthesis of other complexes

For eg. We have to synthesize [Pt(Py)(NH₃)(Br)(Cl)] from [PtCl₄]²⁻

Try to solve this question....!!!!!!

Synthesise cis si brans isomer of
$$[Pt(C_2H_4)NH_3C_{12}]$$
 from $[Pt(C_2)_4]^2$
from $[PtU_4]^2$... order of transeffect = $[-C_2H_4 > U^- > NH_3]$