
Metal-Ligand Bonding in Transition Metal Complexes (Lecture-4)

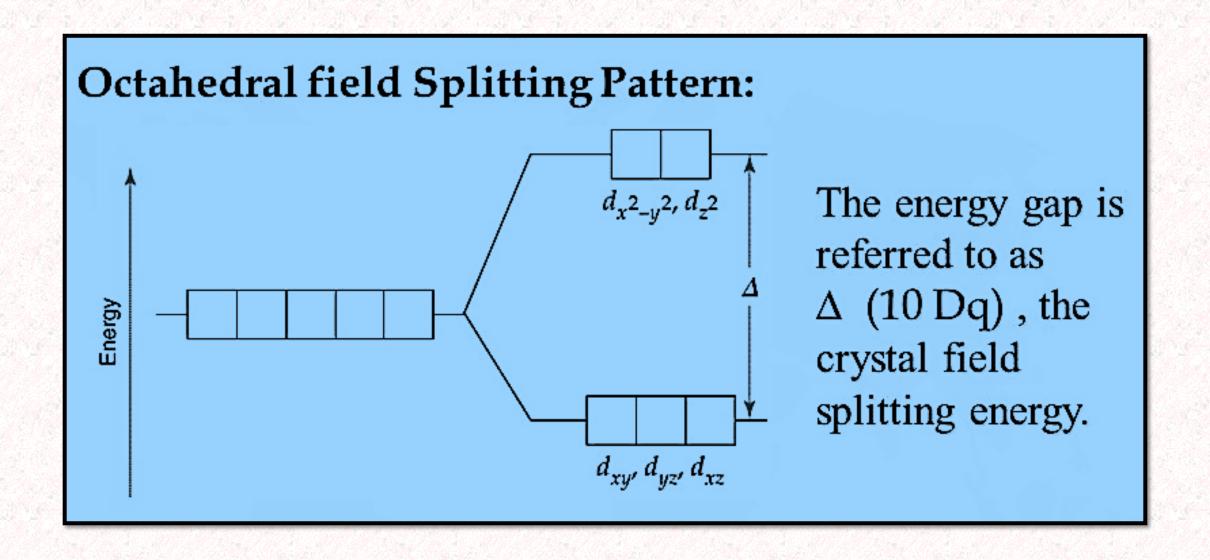
B.Sc. 5th Semester (Pass Course)

INORGANIC CHEMISTRY

(As per MDU, Rohtak Syllabus)

Presented by:

Dr. Anju Siwach

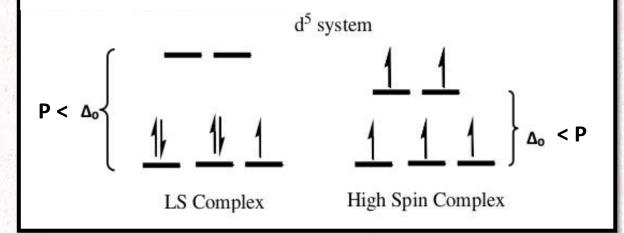

Assistant Professor Chemistry

Govt. College, Badli, Jhajjar.

CONTENT

- Crystal field splitting energy
- Crystal field stabilization energy
- Factors affecting value of Δ_{oct}
- Spectrochemical series

Crystal field splitting energy



Crystal field stabilization energy (CFSE)

CFSE for an Octahedral Complex

CFSE= -0.4 x
$$n(T_{2g}) + 0.6 x n(E_g) \Delta_0$$

Where, n is the no. of electrons

HS Complex

 $t_{2g}^3 e_g^2$

CFSE =
$$\{-0.4(3) + 0.6(2)\}\Delta_{o}$$

= $0 \Delta_{o}$

LS Complex

 $t_{2g}^5 e_g^0$

CFSE =
$$\{-0.4(5) + 0.6(0)\}\Delta_0 + 2P$$

= $-2.0 \Delta_0 + 2P$

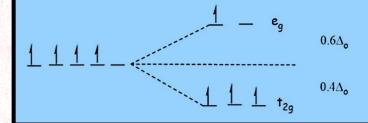
Calculation of CFSE for d⁵ (HS+LS) octahedral Complex

d"	High-spin = weak field		Low-spin = strong field	
	Electronic	CFSE	Electronic configuration	CFSE
d^{1} d^{2} d^{3} d^{4} d^{5} d^{6} d^{7} d^{8} d^{9} d^{10}	$t_{2g}^{1}e_{g}^{0}$ $t_{2g}^{2}e_{g}^{0}$ $t_{2g}^{3}e_{g}^{0}$ $t_{2g}^{3}e_{g}^{1}$ $t_{2g}^{3}e_{g}^{2}$ $t_{2g}^{4}e_{g}^{2}$ $t_{2g}^{5}e_{g}^{2}$ $t_{2g}^{6}e_{g}^{3}$ $t_{2g}^{6}e_{g}^{4}$	$-0.4\Delta_{ m oct} \ -0.8\Delta_{ m oct} \ -1.2\Delta_{ m oct} \ -0.6\Delta_{ m oct} \ 0 \ -0.4\Delta_{ m oct} \ -0.8\Delta_{ m oct} \ -1.2\Delta_{ m oct} \ -0.6\Delta_{ m oct} \ 0$	$t_{2g}^{4}e_{g}^{0}$ $t_{2g}^{5}e_{g}^{0}$ $t_{2g}^{6}e_{g}^{0}$ $t_{2g}^{6}e_{g}^{1}$	$-1.6\Delta_{\text{oct}} + P$ $-2.0\Delta_{\text{oct}} + 2P$ $-2.4\Delta_{\text{oct}} + 2P$ $-1.8\Delta_{\text{oct}} + P$

Crystal field stabilisation energy for high spin d⁴ octahedral complex is

A. -1.8 Δ_{0}

B. $-1.6 \Delta_0 + P$


C. -1.2 Δ_{0}

D. $-0.6 \Delta_0$

D. -0.6 Δ_o

In the case of high spin complex Δ_o is small. Thus, the energy required to pair up the fourth electron with the electrons of lower energy d- orbitals would be higher than that required to place the electrons in the higher d-orbital. Thus pairing does not occur.

For high spin d⁴ octahedral complex,

Factors affecting magnitude of Δ_{oct}

- Nature of metal ion (row to which it belongs)
 Going from the first row to second row there is an increase in Δ₀: Larger the metal → larger is the Δ
- 2. Oxidation state of the metal ion (higher the oxidation state more is the $\Delta_{\rm o}$
- 3. Number of ligands and shape of complex (Octahedral, tetrahedral, square planar....)
- 4. Relative strength of the ligand (Spectrochemical Series)

```
1)Nature of metal ion:
```

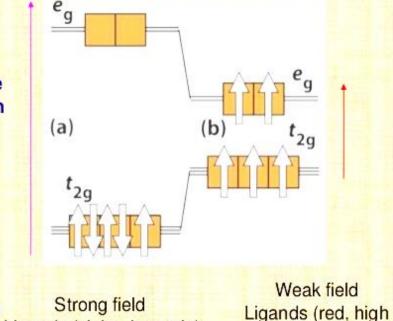
a) Same metal ion with different charge

```
e.g. [Co(H_2O)_6]^{3+} [Co(H_2O)_6]^{2+} Co^{2+} \Delta o = 18,200 \text{ cm}^{-1} > \Delta o = 9,300 \text{ cm}^{-1}
```

b) Different metal ion with same charge

```
e.g. [Co(H_2O)_6]^{2+} [Ni(H_2O)_6]^{2+} Co^{2+} (d^7) Ni^{2+} (d^8) \Delta o = 9,300 \text{ cm}^{-1} > \Delta o = 8,500 \text{ cm}^{-1}.
```

c) Different metal ion with different charge but same number of d -


```
e.g. [Cr (H_2O)_6]^{3+} [V(H_2O)_6]^{2+} V^{2+} (d^3) \Delta o = 17,400 \text{ cm}^{-1} > \Delta o = 12,400 \text{ cm}^{-1}
```

d) Different metal ion with same charge but different principal quantum number.

```
e.g. [Ir (NH_3)_6]^{3+} [Rh(NH_3)_6]^{3+} [Co(NH_3)_6]^{3+} Ir^{3+} (5d^6) Rh^{3+} (4d^6) Co^{3+} (3d^6) n=5 n=4 n=3 \Delta o= 41,000 \text{ cm}^{-1} > \Delta o= 34,000 \text{ cm}^{-1} > \Delta o= 23,000 \text{ cm}^{-1}
```

2)Nature of ligand

- a) When the ligands are strong the energy gap between t_{2g} and e_g is more the distribution of electron does not takes place according to Hund's rule. These are Low spin Complexes.
- b) When ligands are weak
 CFSE is relatively small
 hence five d- orbitals are
 suppose to be degenerate
 and therefore distribution
 of electrons takes place
 according to Hund's rule.
 These are High spin
 Complexes.

spin)

Geometry of complexes

- Order of crystal field stabilization energy according to geometry of complexes is
- Δ sp (square planner) > Δ o (octahedral) > Δ t (tetrahedral)
- 1.73 > 1.23 > 0.43

Spectrochemical Series

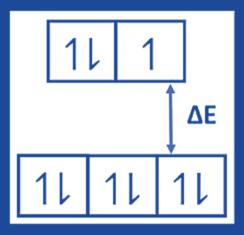
Halides $< OH- < C_2O_4^{2-} < H_2O < NCS^{-} < py < NH_3 < en < NO_2^{-} < CN^{-} < CO$

Weak Field Ligands Weak Metal Interactions Small $\Delta_{\rm o}$

Strong Field Ligands Strong Metal Interactions Large $\Delta_{\rm o}$

High-Spin Complexes

Low-Spin Complexes


Qualitative Theory on Magnitude of Δ_o

Spectrochemical Series

The spectrochemical series arranges ligands in order of their ability to split d-orbitals in an octahedral complex ion.

$$I^- < Br^- < S^{2-} < Cl^- < F^- < OH^- < H_2O < SCN^- < NH_3 < CN^- \approx CO$$

Increasing splitting of d-orbitals

The greater the splitting, the greater the energy difference (ΔE) between the two sets of d-orbitals.

The Spectrochemical Series

$$I^{-} < Br^{-} < [NCS]^{-} < Cl^{-} < F^{-} < [OH]^{-} < [ox]^{2-} \sim H_2O < [NCS]^{-} < NH_3 < en < [CN]^{-} \sim CO$$

σ donor

Weak field ligands

Ligands increasing $\Delta_{\rm oct}$

→ Strong field ligands

- Small ∆
- High spin
- \blacksquare π donors

- Large ∆
- Low spin
- \blacksquare π acceptors

